Coefficient of Kinetic Friction

Group Quiz 5

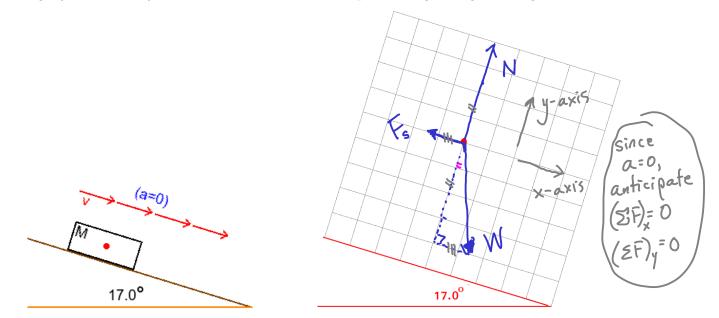
Group Number:

Names:

Answer Kec

Date:

Show all work. If you don't have enough room on this document, you can add pages.


[15 points total] In both problems below, you are given a block of mass M on a given surface with friction between them. The empirical formula for kinetic friction is

 $F_k = \mu_k N$

where N is the normal force and μ_k is the coefficient of kinetic friction.

In the given diagrams, the red dot indicates the block's center of mass. You can use these facts:

- $g = 9.80 \,\mathrm{m/s^2}$ is the gravitational acceleration.
- $M = 3.50 \,\mathrm{kg}$ is the mass of the block.
- m is the mass of the hanging block (problem 2), which is to be determined.
- μ_k is the coefficient of kinetic friction between the block of mass M and the surface.
- Disregard effects due to the air.
- Assume the string and the pulley are both ideal.
- (1) [6 total] When the surface is tipped up to an angle of $\theta = 17.0^{\circ}$, and the block given a gentle push, it slides down with a constant speed as illustrated below. This is a unique angle, when set to any other angle (from 0° to 90°), it will not move with a constant speed when given a gentle nudge.

/1 (1.a) In the grid space above right, construct a free body diagram (or force diagram) for the sliding mass. This should also include a coordinate system.

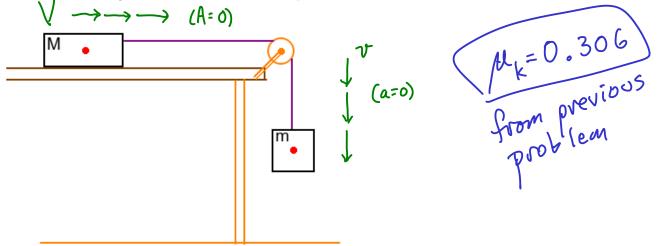
/3 (1.b) Apply Newton's second law in component form for the sliding mass. This should include two equations.

$$(\Xi F)_{x} = W_{x} + F_{sx} + N_{x} = m a_{x} \qquad (\Xi F)_{y} = W_{y} + F_{sy} + N_{y} = m a_{y}$$
$$W \sin \theta - F_{s} + (0) = (0) \qquad -W \cos \theta + (0) + N = 0$$
$$\overline{F_{s}} = W \sin \theta \qquad \overline{N} = W \cos \theta$$

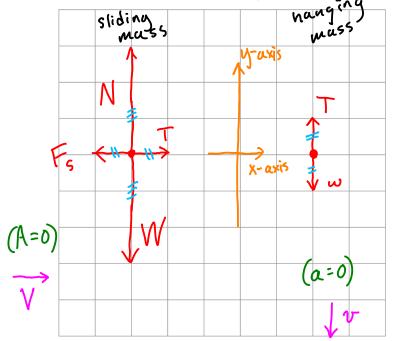
/1 (1.c) Using those equations and the kinetic friction law, derive a formula for the coefficient of kinetic friction μ_k in terms other measured or given quantities.

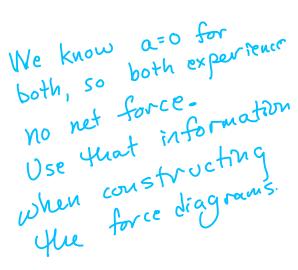
$$\mathcal{U}_{k} = \frac{F_{s}}{N} = \frac{W \sin \theta}{W \cos \theta} = \tan \theta$$

 $\mu_k = tan \theta$ (formula) (1.d) Compute the value of μ_k precise to three significant figures. /1with $\theta = 17^{\circ}$, $\tan 17^{\circ} = 0.30573...$ $\mu_k = 0.306$ (number) (if you get tan 17 = 3.493..., you are in radian mode)

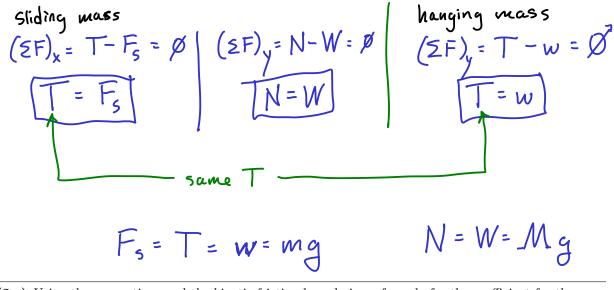

[Problem 2 is on next page.]

0


(2) [9 total] We now use the same block and surface, but this time it is level. We attach another mass m using an ideal string and an ideal pulley as shown below. The mass m hangs over the edge of the table.


When we let go and give the block M a little push to the right, they are observed to move with a constant speed. When a different mass m is hanging, they will not move at a constant speed.

In this problem, use the same value of μ_k you had in problem 1. Your task is now to figure out the value of η_k that will give the situation of constant speed described above.



(2.a) Construct free body diagrams (or force diagrams) for the sliding mass and the hanging mass. This should also include a coordinate system. Your diagrams should also include coordinate axes. (You should also make motion diagrams.)

/4 (2.b) Apply Newton's second law in component form for the sliding mass (two equations) and the hanging mass (one equation).

/2 (2.c) Using those equations and the kinetic friction law, derive a formula for the coefficient for the hanging mass m in terms other measured or given quantities.

$$M_{k} = \frac{F_{s}}{N} = \frac{mg}{Mg} = \frac{m}{M} \implies m = \mu_{s}M$$

$$m = M_{s} M_{\text{(formula)}}$$
(2.d) Compute the value of *m* precise to three significant figures.
$$M = M_{s} M = (0.306)(3.50) = m = 1007 \text{ kg (number)}$$

$$from 1 \text{ given}$$

$$from 2 \text{ given}$$

$$from 2 \text{ given}$$

$$from 3 \text{ given}$$

$$from 4 \text{ given}$$

$$from 4 \text{ given}$$

$$from 5 \text{ given}$$

$$from 5 \text{ given}$$

[Done.]

. .