Coefficient of Kinetic Friction Group Quiz 5

Group Number: Names:

Answer Kec

Date:

Show all work. If you don't have enough room on this document, you can add pages.

[15 points total] In both problems below, you are given a block of mass M on a given surface with friction between them. The empirical formula for kinetic friction is

 $F_k = \mu_k N$

where N is the normal force and μ_k is the coefficient of kinetic friction.

In the given diagrams, the red dot indicates the block's center of mass. You can use these facts:

- $q = 9.80 \,\mathrm{m/s^2}$ is the gravitational acceleration.
- $M = 3.50 \text{ kg}$ is the mass of the block.
- \bullet *m* is the mass of the hanging block (problem 2), which is to be determined.
- μ_k is the coefficient of kinetic friction between the block of mass M and the surface.
- Disregard effects due to the air.
- Assume the string and the pulley are both ideal.
- (1) [6 total] When the surface is tipped up to an angle of $\theta = 17.0^{\circ}$, and the block given a gentle push, it slides down with a constant speed as illustrated below. This is a unique angle, when set to any other angle (from $0°$ to $90°$), it will not move with a constant speed when given a gentle nudge.

 (1.1) In the grid space above right, construct a free body diagram (or force diagram) for the sliding mass. This should also include a coordinate system.

/3 Apply Newton's second law in component form for the sliding mass. This should include two (1.b) equations. n I

$$
\begin{array}{c|c}\n\left(\sum F\right)_x = W_x + F_{5x} + N_x = m \, dx \\
W \sin \theta - F_5 + (0) = (0) \\
\hline\n\left[F_5 = W \sin \theta\right]\n\end{array}
$$
\n
$$
\begin{array}{c|c}\n\left(\sum F\right)_y = W_y + F_{5y} + N_y = m \, dx_y \\
-W \cos \theta + (0) + N = 0 \\
\hline\nN = W \cos \theta\n\end{array}
$$

 $/1$ (1.c) Using those equations and the kinetic friction law, derive a formula for the coefficient of kinetic friction μ_k in terms other measured or given quantities.

$$
e^{a\theta^{out}} - \mu_k = \frac{F_s}{N} = \frac{W \sin \theta}{W \cos \theta} = \tan \theta
$$

 $\mu_k = \frac{1}{k}$ $\alpha \eta$ θ (formula) /1 (1.d) Compute the value of μ_k precise to three significant figures. with $\theta = 17^{\circ}$, $tan 17^{\circ} = 0.30573...$ $\mu_k = \frac{0.306}{100}$ (number) (if you get tan 17 = 3.493..., you are in radian mode)

[Problem 2 is on next page.]

 $\overline{\mathbf{c}}$

(2) [9 total] We now use the same block and surface, but this time it is level. We attach another mass m using an ideal string and an ideal pulley as shown below. The mass m hangs over the edge of the table.

When we let go and give the block M a little push to the right, they are observed to move with a constant speed. When a different mass m is hanging, they will not move at a constant speed.

In this problem, use the same value of μ_k you had in problem 1. Your task is now to figure out the value of m that will give the situation of constant speed described above.

 $(2.a)$ Construct free body diagrams (or force diagrams) for the sliding mass and the hanging mass. This should also include a coordinate system. Your diagrams should also include coordinate axes. (You should also make motion diagrams.)

We know a=o for
both, so both experience
no net force, mation
Use year information
Use years tructing

 $/4$ (2.b) Apply Newton's second law in component form for the sliding mass (two equations) and the hanging mass (one equation).

 $/2$ (2.c) Using those equations and the kinetic friction law, derive a formula for the coefficient for the hanging mass m in terms other measured or given quantities.

$$
\mu_k = \frac{F_s}{N} = \frac{mg}{Mg} = \frac{m}{M} \implies m = \mu_s M
$$

$$
m = \mu_s M
$$
 (formula)
\n
$$
m = \mu_s M
$$

[Done.]