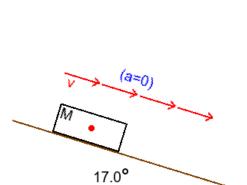
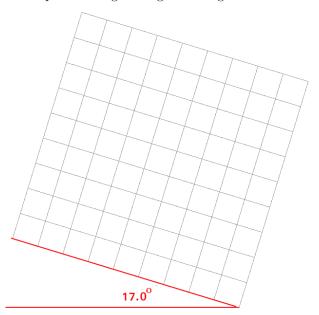
Group Number: Names:

Date:

Show all work. If you don't have enough room on this document, you can add pages.


[15 points total] In both problems below, you are given a block of mass M on a given surface with friction between them. The empirical formula for kinetic friction is


$$F_k = \mu_k N$$

where N is the normal force and  $\mu_k$  is the coefficient of kinetic friction.

In the given diagrams, the red dot indicates the block's center of mass. You can use these facts:

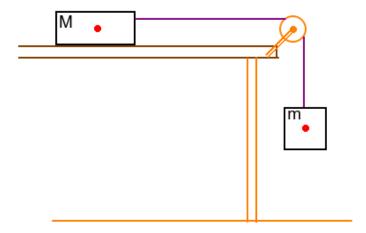
- $g = 9.80 \,\mathrm{m/s^2}$  is the gravitational acceleration.
- $M = 3.50 \,\mathrm{kg}$  is the mass of the block.
- m is the mass of the hanging block (problem 2), which is to be determined.
- $\mu_k$  is the coefficient of kinetic friction between the block of mass M and the surface.
- Disregard effects due to the air.
- Assume the string and the pulley are both ideal.
- (1) [6 total] When the surface is tipped up to an angle of  $\theta = 17.0^{\circ}$ , and the block given a gentle push, it slides down with a constant speed as illustrated below. This is a unique angle, when set to any other angle (from  $0^{\circ}$  to  $90^{\circ}$ ), it will not move with a constant speed when given a gentle nudge.





(1.a) In the grid space above right, construct a free body diagram (or force diagram) for the sliding mass. This should also include a coordinate system.

/1


| /3 | (1.b) | Apply Newton's second law in component form for the sliding management equations.                                                  | ass. This should                   | d include two     |
|----|-------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|
|    |       |                                                                                                                                    |                                    |                   |
|    |       |                                                                                                                                    |                                    |                   |
|    |       |                                                                                                                                    |                                    |                   |
|    |       |                                                                                                                                    |                                    |                   |
| /1 | (1.c) | Using those equations and the kinetic friction law, derive a formula friction $\mu_k$ in terms other measured or given quantities. | lla for the coeff                  | icient of kinetic |
|    |       |                                                                                                                                    |                                    |                   |
|    |       |                                                                                                                                    |                                    |                   |
|    |       |                                                                                                                                    |                                    |                   |
|    |       |                                                                                                                                    |                                    | (6 1)             |
| /1 | (1.d) | Compute the value of $\mu_k$ precise to three significant figures.                                                                 | $\mu_k = \underline{\hspace{1cm}}$ | (formula)         |
|    |       |                                                                                                                                    | $\mu_k=$                           | (number)          |

[Problem 2 is on next page.]


(2) [9 total] We now use the same block and surface, but this time it is level. We attach another mass m using an ideal string and an ideal pulley as shown below. The mass m hangs over the edge of the table.

When we let go and give the block M a little push to the right, they are observed to move with a constant speed. When a different mass m is hanging, they will not move at a constant speed.

In this problem, use the same value of  $\mu_k$  you had in problem 1. Your task is now to figure out the value of m that will give the situation of constant speed described above.



/2 (2.a) Construct free body diagrams (or force diagrams) for the sliding mass and the hanging mass. This should also include a coordinate system. Your diagrams should also include coordinate axes. (You should also make motion diagrams.)



| /4 | (2.b) | Apply Newton's second law in component form for the sliding mass (two equations) and the |
|----|-------|------------------------------------------------------------------------------------------|
|    |       | hanging mass (one equation).                                                             |

/2 (2.c) Using those equations and the kinetic friction law, derive a formula for the coefficient for the hanging mass m in terms other measured or given quantities.

 $m = \underline{\hspace{1cm}}$  (formula)

/1 (2.d) Compute the value of m precise to three significant figures.

m= kg (number)

[Done.]