home HiHW GW Tests Ancillary Software (You are here: tests/formulas.html)

 Formulas

These formulas may have slightly different notation but consistent with what I usually write.
Constants and Math formulas \[ g=9.80\,\mbox{m/s}^2 \qquad G=6.673\times 10^{-11}\,\mbox{N}\cdot\mbox{m}^2/\mbox{kg}^2 \] \[ ax^2+bx+c=0 \qquad x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \]
Kinematics \begin{align} & v_x = v_{x0} + a_x \,t \\[1ex] & x=x_0+v_{x0}\,t +\tfrac12\,a_x\,t^2 \\[1ex] & v_x^2 = v_{x0}^2 + 2a_x\cdot(x-x_0) \\[1ex] & \bar{v}_x = \left(\frac{v_x+v_{x0}}{2}\right) \end{align} Special case projectile motion: \[ R = \frac{v_0^2\,\sin(2\theta)}{g}\qquad T = \frac{2v_{y0}}{g} \qquad H = \frac{v_{y0}^2}{2g} \]
Forces \[ (\Sigma F)_x = ma_x \] Special formulas: \begin{align} & W = mg\qquad\mbox{(weight)} \\[2ex] & F_k = \mu_k N\qquad\mbox{(kinetic friction)} \\[2ex] & F_s \le \mu_s N\qquad\mbox{(static friction)} \\[2ex] & F_e = -kx \qquad\mbox{($e$ for elastic, Hooke's law)} \\[2ex] & F_g= \frac{G\,Mm}{d^2} = mg \qquad\mbox{(gravitational force, weight, def of $g$)}\\[2ex] & a_c = \frac{v^2}{r}\qquad\mbox{(centripetal [component of] acceleration)} \\[2ex] & (\Sigma F)_c = ma_c=\frac{mv^2}{r}\qquad\mbox{(centripetal [component of net] force)} \end{align}

Work \[ \mbox{Work}=Fd\cos(\theta)= \tfrac12 mv_f^2 - \tfrac12 mv_i^2 \] \[ \mbox{Work}_{\mbox{nc}} = \Delta\,\mbox{KE} + \Delta\,\mbox{PE} \qquad\mbox{(nc=non-conservative)} \] \[ \bar{P} = \frac{\Delta E}{\Delta t} = \frac{\mbox{Work}}{\mbox{time}} =\frac{\mbox{Energy transformed}}{\mbox{time}}\qquad\mbox{(average power)} \]

Some types of energy: \begin{align} & \mbox{KE} = \tfrac12 \,mv^2 \qquad \mbox{(translational kinetic energy)}\\[2ex] & \mbox{PE}_g = mgh \qquad \mbox{(gravitational potential energy)}\\[2ex] & \mbox{PE}_s = \tfrac12 \,kx^2 \qquad \mbox{(elastic potential energy, spring)}\\[2ex] \end{align}


Momentum \begin{align} &\vec{p} = m\vec{v}\qquad\mbox{(momentum)}\\[2ex] &\vec{J} = (\Sigma\vec{F})(\Delta t) = \vec{p}_f - \vec{p}_i = \Delta\vec{p}=m\Delta\vec{v} \qquad\mbox{(impulse)}\\[2ex] &\left(v_A - v_B\right)= -\left(v_A' - v'_B\right)\qquad\mbox{(elastic collision in 1-D)}\\[2ex] &\mbox{If $v_B=0$ then}\quad v_A'=\frac{m_A-m_B}{m_A+m_B}\cdot v_A \qquad v_B'=\frac{2m_A}{m_A+m_B}\cdot v_A \qquad\mbox{(inelastic collision in 1-D)} \end{align}

No FERPA-protected information (student names, grades, etc.) appears on this website.
This website does not use cookies, but it uses a little javascript mostly to render formulas, and even less php.
jones.3 (R Jones)
Last Modified 23:07:11 28-Feb-2022